
Original Idea comes from Avaq/combinators.js.

Name # Haskell Ramda Crocks Functional Signature Functor m ⇒
Function f, g, h

Evaluation

identity I id identity identity a → a

constant K const always constant a → b → a

eager
application¹

A ($) call (() → b) → b

lazy
application

thunkify ,
partial

(a → b) → a → (() → b)

thrush T (&) applyTo applyTo a → (a → b) → b

tap tap tap (a → b) → a → a

flip C flip flip flip (a → b → c) → b → a → c f(b, a)

compose B
(.) ,
fmap ²

map ², o composeB (b → c) → (a → b) → a → c (b → c) → m b → m c f(g(a))

substitution S ap ² ap ² substitution (a → b → c) → (a → b) → a → c m (b → c) → m b → m c f(a, g(a))

chain chain ² (a → b → c) → (b → a) → b → c (a → m c) → m a → m c f(g(b), b)

duplication W join ² unnest ² (a → a → b) → a → b m (m b) → m b f(a, a)

lift
converge ,
lift

converge (b → c → d) → (a → b) → (a → c) → a → d (b → c → d) → m b → m c → m d f(g(a), h(a))

useWith useWith compose2 (c → d → e) → (a → c) → (b → d) → a → b → e f(g(a), h(b))

psi P on on psi (b → b → c) → (a → b) → a → a → c f(g(a1), g(a2))

"compose
inner"

map ³ (a → d → c) → (b → d) → (a → b → c) Functor n ⇒ m (d → c) → n d → m n c f(a, g(b))

"lift partial" map ⁴ (d → b → c) → (a → d) → (a → b → c) Functor n ⇒ (d → n c) → m d → m n c f(g(a), b)

unit unit () → undefined

¹) The A-combinator can be implemented as an alias of the I-combinator. Its implementation in Haskell exists because the infix nature gives it some utility. Its implementation in Ramda exists because it is overloaded with
additional functionality.

²) Algebras like ap have different implementations for different types. They work like Function combinators only for Function inputs.

³) (mfd2c, nd) => map(fd2c => map(fd2c)(nd))(mfd2c)

⁴) (fd2nc, md) => map(fd2nc, md)

Function Combinators with Ramda

https://gist.github.com/Avaq/1f0636ec5c8d6aed2e45
https://www.haskell.org/
http://ramdajs.com/
https://crocks.dev/docs/functions/combinators.html

